The Kato-Rellich Theorem

Problem. Let $A : D(A) \subseteq \mathcal{H} \to \mathcal{H}$ and $B : D(B) \subseteq \mathcal{H} \to \mathcal{H}$ be two linear operators densely defined. Suppose that $A^* = A$ and $B \subseteq B^*$ such that $D(A) \subseteq D(B)$. In particular, it makes sense to consider $A + B : D(A) \subseteq \mathcal{H} \to \mathcal{H}$. Moreover, it was proved that

$$A + B \subseteq A^* + B^* \subseteq (A + B)^*.$$

The question that arises is under what conditions it holds that

$$(A+B)^* = A+B.$$

That problem appears for instance in Quantum Mechanics. The initial value problem (IVP) for the Schrödinger equation is written as

$$\begin{cases} i\partial_t u = -\Delta u + \underbrace{Vu}_{\text{multiplication by a real potential}} = \underbrace{(H_0 + V)}_{\text{symmetric operator}} u, \\ u(0) = \phi \in H^2. \end{cases}$$
(0.1)

If the operator were self-adjoint we should show by means of the Spectral Theorem that the IVP (0.1) is well-posed, or in other words, the operator $H_0 + V$ generates a unitary group. In addition, we could obtain information on the spectrum of $H_0 + V$.

In order to do this we need of the following notion.

Definition 1. Let $A : D(A) \subseteq \mathcal{H} \to \mathcal{H}$ and $B : D(B) \subseteq \mathcal{H} \to \mathcal{H}$ be two linear operators. We say that *B* is bounded in relation to *A* (or *B* is *A*-bounded) if

(i) $D(A) \subseteq D(B)$,

(ii) There exist $\alpha > 0$ and $\beta > 0$ such that

 $\|B\phi\| \le \alpha \, \|\phi\| + \beta \, \|A\phi\|, \quad \forall \phi \in D(A).$

The number

$$\beta_0 = \inf\{\beta > 0 : (ii) \text{ holds}\}$$

is called the *A*-bound related to *B*.

Exercise 1. If *A* is a closed linear operator and *B* is a *A*-bounded linear operator, show that

(a) $\mathcal{H}_0 = (D(A), [\cdot, \cdot])$ is a Hilbert space with inner product $[\phi, \psi] = (\phi, \psi) + (A\phi, A\psi).$

(b) $B \in \mathcal{B}(\mathcal{H}_0)$.

Example 1. Let $\mathcal{H} = L^2(\mathbb{R}^n)$, $A = H_0$ and $B : H^1(\mathbb{R}^n) \subseteq L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ $\phi \mapsto \frac{1}{i}\phi'$,

then B is A-bounded with A-bound equals zero.

Indeed, $D(A) = H^2(\mathbb{R}^n) \subseteq H^1(\mathbb{R}^n) = D(B)$ implies (i) in Definition (1).

Let $\epsilon > 0$, then $|\xi| \le \epsilon |\xi|^2 + \frac{1}{4\epsilon}$.

Using the Plancherel identity we have

$$\begin{split} \|B\phi\|^2 &= \|\widehat{B\phi}\|^2 = \int_{\mathbb{R}^n} |\xi\phi(\xi)|^2 \, d\xi \\ &\leq \int_{\mathbb{R}^n} (\epsilon|\xi|^2 + \frac{1}{4\epsilon})^2 |\widehat{\phi}(\xi)|^2 \, d\xi \\ &\leq c\epsilon^2 \int_{\mathbb{R}^n} ||\xi|^2 \widehat{\phi}(\xi)|^2 \, d\xi + c(\epsilon) \int_{\mathbb{R}^n} |\widehat{\phi}(\xi)|^2 \, d\xi. \end{split}$$

This implies that

$$||B\phi|| \le c\epsilon ||A\phi|| + c(\epsilon) ||\phi||, \quad \forall \phi \in H^2(\mathbb{R}^n).$$

Since this holds for any $\epsilon > 0$, we deduce that *B* is *A*-bounded and the *A*-bound of *B* is equal to zero.

Proposition 1. Let *A* and *B* be closed linear operators. Suppose that $D(A) \subseteq D(B)$ and $\rho(A) \neq \emptyset$. Then (ii) in Definition1 holds.

Proof. Take $z \in \rho(A)$, then

$$B(A-z)^{-1}:\mathcal{H}\to\mathcal{H}$$

is closed. By the Closed Graph Theorem we get $B(A-z)^{-1} \in \mathcal{B}(\mathcal{H})$. Next, for all $\phi \in D(A)$

$$||B\phi|| = ||B(A-z)^{-1}(A-z)||$$

$$\leq ||B(A-z)^{-1}|| ||(A-z)\phi||$$

$$\leq c||A\phi|| + c|z|||\phi||.$$

Exercise 2. If *B* is a closed linear operator, $\rho(A) \neq \emptyset$, prove that the following statements are equivalent

- 1. B is A-bounded.
- 2. $B(A-z)^{-1} \in \mathcal{B}(\mathcal{H})$ for some $z \in \rho(A)$.

3. $B(A-z)^{-1} \in \mathcal{B}(\mathcal{H})$ for all $z \in \rho(A)$.

Definition 2. Let *A* be a linear operator such that $A \subseteq A^*$. We say that *A* is a positive operator if and only if

$$(A\phi,\phi) \ge 0 \quad \forall \phi \in D(A).$$

(i.e. a bilinear form

$$b_*: D(A) \times D(A) \to \mathbb{C}$$
$$\phi \mapsto (A\phi, \phi)$$

is positive.)

A is strictly positive if and only if

$$(A\phi,\phi)>0 \quad \forall \phi\in D(A).$$

Remarks 3.

(i) $A \subseteq A^*$ implies that

$$(A\phi,\phi) = (\phi,A\phi) = \overline{(A\phi,\phi)} \quad \forall \phi \in D(A)$$

and so $(A\phi, \phi) \in \mathbb{R}$.

(ii) We can define an order relation on positive symmetric operators as: $A \ge B$ if and only if $A - B \ge 0$.

Definition 3. If there exists $\lambda_0 \in \mathbb{C}$ such that $A \geq \lambda_0$, we say that A is lower bounded.

Exercise 4. Let $A : D(A) \subset \mathcal{H} \to \mathcal{H}$ such that $A = A^*$ and $M \in \mathbb{R}$. Show that $A \ge M$ if and only if $(-\infty, M) \subset \rho(A)$.

From this we can see that a self-adjoint operator is lower bounded if and only if its spectrum is bounded below. **Theorem 5** (Kato-Rellich Theorem). Let $A : D(A) \subseteq \mathcal{H} \to \mathcal{H}$ be a linear self-adjoint operator and let $B : D(B) \subseteq \mathcal{H} \to \mathcal{H}$ be a linear symmetric operator. Suppose that B is A-bounded with lower bound $\beta < 1$. Then

$$A + B : D(A) \subseteq \mathcal{H} \to \mathcal{H}$$

is a self-adjoint operator.

In addition, if there exists $M \in \mathbb{R}$ so that $A \ge M$, then there exists $\widetilde{M} \in \mathbb{R}$ such that $A + B \ge \widetilde{M}$.

Proof. We divide the proof in two parts.

<u>First Part.</u> We use the basic criteria for self-adjointness. We have to prove that there exists $\lambda > 0$ such that

$$R(A+B\pm i\lambda)=\mathcal{H}.$$

We observe first that $A = A^*$ implies that $i\lambda \in \rho(A)$, for all $\lambda > 0$. Next we write

$$A + B \pm i\lambda = (I + B(A \pm i\lambda)^{-1})(A \pm i\lambda).$$

Then it is sufficient to show that $I + B(A \pm i\lambda)^{-1}$ is surjective. To prove this it is enough to show that there exists $\lambda > 0$ such that

$$\|B(A\pm i\lambda)^{-1}\|<1$$

employing Neumann series.

Let $\phi \in D(A)$. By the hypotheses *B* is *A*-bounded with *A*-bound $\beta_0 < 1$, there exist $0 < \beta < 1$ and $\alpha > 0$ such that

$$\|B\phi\| \le \alpha \|\phi\| + \beta \|A\phi\|. \tag{0.2}$$

Let $\psi \in \mathcal{H}$, since $(A \pm i\lambda)$ is surjective there exists $\phi \in D(A)$ such that $(A \pm i\lambda)\phi = \psi$. This implies that

$$||B(A \pm i\lambda)^{-1}\psi|| = ||B\phi|| \le \alpha ||\phi|| + \beta ||A\phi||.$$
(0.3)

In addition,

 $\|\psi\|^{2} = \|(A \pm i\lambda)\phi\|^{2} = ((A \pm i\lambda)\phi, (A \pm i\lambda)\phi) = \|A\phi\|^{2} + \lambda^{2}\|\phi\|^{2}.$

As a consequence,

$$\begin{cases} \|A\phi\| \le \|\psi\|,\\ \|\phi\| \le \frac{1}{\lambda} \|\psi\| \end{cases}$$
(0.4)

Combining (0.4) with (0.3) we obtain

$$\|B(A \pm i\lambda)^{-1}\psi\| \le \left(\frac{\alpha}{\lambda} + \beta\right)\|\psi\| < \|\psi\|$$

whenever λ is chosen sufficiently large.

<u>Second Part.</u> We know that $A = A^*$ and $(A + B)^* = A + B$. From the Exercise 4, $A \ge M$ yields that $(-\infty, M) \subset \rho(A)$. We would like to find \widetilde{M} so that $(-\infty, \widetilde{M}) \subset \rho(A + B)$. (exercise!).

Remark 1. It is not possible to improve the condition $\beta_0 < 1$. For instance, if we choose B = -A then $\beta_0 = 1$, where A is an unbounded operator. Indeed, we have $A + B : D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$, A + B = 0 but $0_{\mathcal{H}} : \mathcal{H} \rightarrow \mathcal{H}$ is symmetric which implies that A + B is not maximal symmetric and thus A + B is not a self-adjoint operator. **Definition 4.** *B* is called relatively compact to *A*, or *B* is *A*-compact, if there exists $z \in \rho(A)$ such that

 $B(A-z)^{-1} \in \mathcal{K}(\mathcal{H}) = \{L \in \mathcal{B} : L \text{ is a compact operator}\}$

Remark 2. We already saw that if *B* is *A*-compact, then *B* is *A*-bounded.

Theorem 6. Let $A = A^*$ and let *B* be an *A*-compact operator. Then *B* is *A*-bounded operator with *A*-bound equals zero.

Definition 5. Let $A = A^*$ be a linear operator. The discrete spectrum of A is the set in \mathbb{C} given by

 $\sigma_d(A) = \{\lambda \in V_p(A) : \lambda \text{ is isolated with finite multiplicity}\}.$

The essential spectrum of A is the set in \mathbb{C} given by $\sigma_e(A) = \sigma(A) \setminus \sigma_d(A)$.

Theorem 7 (Theorem of Kato-Rellich (II)). Let $A = A^*$ and $B \subseteq B^*$ such that *B* is *A*-compact. Then A + B is a self-adjoint operator and $\sigma_e(A + B) = \sigma_e(A)$.

Application

A quantum particle of mass m interacting with a potential (real measurable) V in \mathbb{R}^3 is described by the the Schrödinger equation,

$$i \not h \, \partial_t u = -\frac{\not h^2}{2m} \Delta u + V(x) u \tag{0.5}$$

where $h = \frac{h}{2\pi}$ is the Plank constant and $u(x,t) \in \mathbb{C}$. The quantity $|u(x,t)|^2$ is a probability density of distribution of the particle at instant t. That is, if $u(x,0) = \phi(x)$ and S is a measurable set in \mathbb{R}^3 , then

$$P(S) = \frac{1}{\|\phi\|^2} \int_S |u(x,t)|^2 \, dx$$

is the probability to find a particle in the set S.

Exercise 8. Verify that $||u(\cdot, t)|| = ||\phi||$ for all $t \in \mathbb{R}$ holds.

We can normalize the equation (0.5) and write it in the equivalent form

 $i\partial_t u = Hu$

where $H = H_0 + V$. *H* is called the Hamiltonian and H_0 is called the free Hamiltonian.

We will show that $H = H^*$.

Remark 3. Notice that

$$\frac{d}{dt} \|u(t)\|^2 = (\partial_t u, u) + (u, \partial u)$$

then

$$-i(u,\partial_t u) = (u,i\partial_t u) = (u,Hu) = (Hu,u)$$

which implies

$$\frac{d}{dt} \|u(t)\|^2 = i(Hu, u) - i(u, Hu) = 0.$$

Proposition 2. Let $V : \mathbb{R}^3 \to \mathbb{R}$ be a measurable, if $V \in L^2(\mathbb{R}^3) + L_{\infty}^{\infty}(\mathbb{R}^3)$. (*i.e.* there exist $V_1 \in L^2(\mathbb{R}^3)$ and $V_2 \in L_{\infty}^{\infty}$ with $V = V_1 + V_2$), then V is H_0 -compact.

Above we use the notation

$$\begin{split} L^\infty_\infty(\mathbb{R}^3) &= \{ f \in L^\infty(\mathbb{R}^3) : \forall \epsilon > 0, \exists M > 0, \\ \text{such that } |f(x)| \leq \epsilon \text{ a.e. } |x| \geq M \}. \end{split}$$

Proof. We shall show that there exists $z \in \rho(H_0) = \mathbb{C} \setminus [0, \infty)$ such that $V(H_0 - z)^{-1}$ is compact. From Exercise 9 if $R_0(z) = (H_0 - z)^{-1}$ then

$$R_0(z)f = \frac{1}{4\pi} \frac{e^{i\sqrt{z}|x|}}{|x|} * f$$
, for $n = 3$ where $\mathrm{Im}\sqrt{z} > 0$.

Hence

$$V(H_o - z)^{-1} f(x) = V(x) \int_{\mathbb{R}^3} \frac{e^{i\sqrt{z}|x-y|}}{4\pi |x-y|} f(y) \, dy.$$

Then

$$V(H_0 - z)^{-1} f(x) = \int_{\mathbb{R}^3} \underbrace{V_1(x) \frac{e^{i\sqrt{z}|x-y|}}{4\pi |x-y|}}_{K_1(x,y)} f(y) \, dy + \int_{\mathbb{R}^3} \underbrace{V_2(X) \frac{e^{i\sqrt{z}|x-y|}}{4\pi |x-y|}}_{K_2(x,y)} f(y) \, dy.$$

and so

$$V(H_0 - z)^{-1}f = T_{K_1}f + T_{K_2}f.$$

Next we consider T_{K_1} . Notice that

$$\begin{split} K_1 \|^2 &= \int_{\mathbb{R}^3} |V_1(x)|^2 \frac{e^{-2\mathrm{Im}\sqrt{z}|x-y|}}{|x-y|^2} \, dx \, dy \\ &= \int_{\mathbb{R}^3} |V_1(x)|^2 \Big(\int_{\mathbb{R}^3} \frac{e^{-2\mathrm{Im}\sqrt{z}|\tilde{y}|}}{|\tilde{y}|^2} \, d\tilde{y} \Big) \, dx \\ &= \|V_1\|^2 \omega(S^2) \int_0^\infty e^{-2\mathrm{Im}\sqrt{z}r} \, dr \\ &\leq c \, \|V_1\|^2. \end{split}$$

where we used the change of variable $\tilde{y} = x - y$ and after applying Fubinni's theorem we employed polar coordinates. We conclude that $K_1 \in L^2(\mathbb{R}^3 \times \mathbb{R}^3)$. Thus T_{K_1} is a Hilbert-Schmidt operator. Therefore it is a compact operator.

Now we study T_{K_2} . For any $\epsilon > 0$, there exists $M_{\epsilon} > 0$ such that $|V_2(x)| \le \epsilon$ a.e. for $|x| > M_{\epsilon}$. Define

$$V_2^{\epsilon}(x) = \begin{cases} V_2(x), & \text{if } |x| \le M_{\epsilon} \\ 0, & \text{if } |x| \ge M_{\epsilon}. \end{cases}$$

It is clear that $V_2^{\epsilon}(x) \in L^2(\mathbb{R}^3)$. Then $T_{K_2}^{\epsilon} = V_2^{\epsilon}(H_0 - z)^{-1}$ is a compact operator by using the same analysis for T_{K_1} . On the other hand,

$$\begin{aligned} \|T_{K_2}f - T_{K_2}^{\epsilon}f\| &= \|(V_2 - V_2^{\epsilon})(H_0 - z)^{-1}f\| \\ &\leq \|V_2 - V_2^{\epsilon}\|\|(H_0 - z)^{-1}f\| \\ &\leq \|V_2 - V_2^{\epsilon}\|\|(H_0 - z)^{-1}\|\|f\|. \end{aligned}$$

Hence

$$\begin{aligned} \|T_{K_2}f - T_{K_2}^{\epsilon}\| &\leq \|V_2 - V_2^{\epsilon}\| \|(H_0 - z)^{-1}\| \\ &\leq \epsilon \, \|(H_0 - z)^{-1}\| \to 0 \text{ as } \epsilon \to 0. \end{aligned}$$

Thus T_{K_2} is also compact (since $\mathcal{K}(L^2(\mathbb{R}^3))$ is closed). Therefore V is $H_0\text{-compact}.$

Using the Theorem of Kato-Rellich II we deduce then that $H = H^*$.

Example 2. The Coulomb potential $V(x) = \frac{\alpha}{|x|}$, $\alpha > 0$ belongs to the class in Proposition 2.

Exercise 9. Let $H_0 = -\Delta : H^2(\mathbb{R}^n) \subseteq L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ be the free Hamiltonian and let $z \in \rho(H_0) = \mathbb{C} \setminus [0, +\infty)$.

(i) Prove that

$$R_0(z)g := (H_0 - z)^{-1}f = \mathcal{R}_z * g, \ \forall g \in L^2(\mathbb{R}^n)$$

where $\mathcal{R}_z = ((|\xi|^2 - z)^{-1})^{\vee}$. Check that $R_0(z) \in \mathcal{B}(L^2(\mathbb{R}^n))$.

(ii) In case n = 1, prove that

$$\mathcal{R}_z(x) = rac{e^{i\sqrt{z}|x|}}{2\sqrt{z}}, \quad \textit{where } \operatorname{Im}\sqrt{z} > 0.$$

Hint: Use the Residue Theorem.

(iii) If $z = \lambda + i\eta$ with $\lambda \ge 0$, prove that $\lim_{\eta \to 0} R_0(\lambda + i\eta)$ does not exist $\mathcal{B}(L^2(\mathbb{R}^n))$.

References

[1] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag (1995).

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit