The Kato-Rellich Theorem

Problem. Let $A: D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ and $B: D(B) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ be two linear operators densely defined. Suppose that $A^{*}=A$ and $B \subseteq B^{*}$ such that $D(A) \subseteq D(B)$.
In particular, it makes sense to consider $A+B: D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$. Moreover, it was proved that

$$
A+B \subseteq A^{*}+B^{*} \subseteq(A+B)^{*}
$$

The question that arises is under what conditions it holds that

$$
(A+B)^{*}=A+B
$$

That problem appears for instance in Quantum Mechanics.
The initial value problem (IVP) for the Schrödinger equation is written as

$$
\left\{\begin{array}{l}
i \partial_{t} u=-\Delta u+\underbrace{V u}_{\text {multiplication by a real potential }}=\underbrace{\left(H_{0}+V\right)}_{\text {symmetric operator }} u, \tag{0.1}\\
u(0)=\phi \in H^{2} .
\end{array}\right.
$$

If the operator were self-adjoint we should show by means of the Spectral Theorem that the IVP (0.1) is well-posed, or in other words, the operator $H_{0}+V$ generates a unitary group. In addition, we could obtain information on the spectrum of $H_{0}+V$.

In order to do this we need of the following notion.
Definition 1. Let $A: D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ and $B: D(B) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ be two linear operators. We say that B is bounded in relation to A (or B is A-bounded) if
(i) $D(A) \subseteq D(B)$,
(ii) There exist $\alpha>0$ and $\beta>0$ such that

$$
\|B \phi\| \leq \alpha\|\phi\|+\beta\|A \phi\|, \quad \forall \phi \in D(A)
$$

The number

$$
\beta_{0}=\inf \{\beta>0: \text { (ii) holds }\}
$$

is called the A-bound related to B.

Exercise 1. If A is a closed linear operator and B is a A-bounded linear operator, show that
(a) $\mathcal{H}_{0}=(D(A),[\cdot, \cdot])$ is a Hilbert space with inner product

$$
[\phi, \psi]=(\phi, \psi)+(A \phi, A \psi) .
$$

(b) $B \in \mathcal{B}\left(\mathcal{H}_{0}\right)$.

Example 1. Let $\mathcal{H}=L^{2}\left(\mathbb{R}^{n}\right), A=H_{0}$ and

$$
\begin{aligned}
B: H^{1}\left(\mathbb{R}^{n}\right) \subseteq L^{2}\left(\mathbb{R}^{n}\right) & \rightarrow L^{2}\left(\mathbb{R}^{n}\right) \\
\phi & \mapsto \frac{1}{i} \phi^{\prime},
\end{aligned}
$$

then B is A-bounded with A-bound equals zero.

Indeed, $D(A)=H^{2}\left(\mathbb{R}^{n}\right) \subseteq H^{1}\left(\mathbb{R}^{n}\right)=D(B)$ implies (i) in Definition (1).

Let $\epsilon>0$, then $|\xi| \leq \epsilon|\xi|^{2}+\frac{1}{4 \epsilon}$.
Using the Plancherel identity we have

$$
\begin{aligned}
\|B \phi\|^{2}=\|\widehat{B \phi}\|^{2} & =\int_{\mathbb{R}^{n}}|\xi \phi(\xi)|^{2} d \xi \\
& \leq \int_{\mathbb{R}^{n}}\left(\epsilon|\xi|^{2}+\frac{1}{4 \epsilon}\right)^{2}|\widehat{\phi}(\xi)|^{2} d \xi \\
& \leq c \epsilon^{2} \int_{\mathbb{R}^{n}} \|\left.\left.\xi\right|^{2} \widehat{\phi}(\xi)\right|^{2} d \xi+c(\epsilon) \int_{\mathbb{R}^{n}}|\widehat{\phi}(\xi)|^{2} d \xi
\end{aligned}
$$

This implies that

$$
\|B \phi\| \leq c \epsilon\|A \phi\|+c(\epsilon)\|\phi\|, \quad \forall \phi \in H^{2}\left(\mathbb{R}^{n}\right)
$$

Since this holds for any $\epsilon>0$, we deduce that B is A-bounded and the A-bound of B is equal to zero.

Proposition 1. Let A and B be closed linear operators. Suppose that $D(A) \subseteq D(B)$ and $\rho(A) \neq \emptyset$. Then (ii) in Definition1 holds.
Proof. Take $z \in \rho(A)$, then

$$
B(A-z)^{-1}: \mathcal{H} \rightarrow \mathcal{H}
$$

is closed. By the Closed Graph Theorem we get $B(A-z)^{-1} \in \mathcal{B}(\mathcal{H})$. Next, for all $\phi \in D(A)$

$$
\begin{aligned}
\|B \phi\| & =\left\|B(A-z)^{-1}(A-z)\right\| \\
& \leq\left\|B(A-z)^{-1}\right\|\|(A-z) \phi\| \\
& \leq c\|A \phi\|+c \mid z \| \phi \phi .
\end{aligned}
$$

Exercise 2. If B is a closed linear operator, $\rho(A) \neq \emptyset$, prove that the following statements are equivalent

1. B is A-bounded.
2. $B(A-z)^{-1} \in \mathcal{B}(\mathcal{H})$ for some $z \in \rho(A)$.
3. $B(A-z)^{-1} \in \mathcal{B}(\mathcal{H})$ for all $z \in \rho(A)$.

Definition 2. Let A be a linear operator such that $A \subseteq A^{*}$. We say that A is a positive operator if and only if

$$
(A \phi, \phi) \geq 0 \quad \forall \phi \in D(A)
$$

(i.e. a bilinear form

$$
\begin{aligned}
b_{*}: D(A) & \times D(A) \rightarrow \mathbb{C} \\
\phi & \mapsto(A \phi, \phi)
\end{aligned}
$$

is positive.)
A is strictly positive if and only if

$$
(A \phi, \phi)>0 \quad \forall \phi \in D(A) .
$$

Remarks 3.

(i) $A \subseteq A^{*}$ implies that

$$
(A \phi, \phi)=(\phi, A \phi)=\overline{(A \phi, \phi)} \quad \forall \phi \in D(A)
$$

and so $(A \phi, \phi) \in \mathbb{R}$.
(ii) We can define an order relation on positive symmetric operators as: $A \geq B$ if and only if $A-B \geq 0$.

Definition 3. If there exists $\lambda_{0} \in \mathbb{C}$ such that $A \geq \lambda_{0}$, we say that A is lower bounded.

Exercise 4. Let $A: D(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ such that $A=A^{*}$ and $M \in \mathbb{R}$. Show that $A \geq M$ if and only if $(-\infty, M) \subset \rho(A)$.

From this we can see that a self-adjoint operator is lower bounded if and only if its spectrum is bounded below.

Theorem 5 (Kato-Rellich Theorem). Let $A: D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ be a linear self-adjoint operator and let $B: D(B) \subseteq \mathcal{H} \rightarrow \mathcal{H}$ be a linear symmetric operator. Suppose that B is A-bounded with lower bound $\beta<1$. Then

$$
A+B: D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}
$$

is a self-adjoint operator.
In addition, if there exists $M \in \mathbb{R}$ so that $A \geq M$, then there exists $\widetilde{M} \in \mathbb{R}$ such that $A+B \geq \widetilde{M}$.

Proof. We divide the proof in two parts.

First Part. We use the basic criteria for self-adjointness. We have to prove that there exists $\lambda>0$ such that

$$
R(A+B \pm i \lambda)=\mathcal{H}
$$

We observe first that $A=A^{*}$ implies that $i \lambda \in \rho(A)$, for all $\lambda>0$.
Next we write

$$
A+B \pm i \lambda=\left(I+B(A \pm i \lambda)^{-1}\right)(A \pm i \lambda)
$$

Then it is sufficient to show that $I+B(A \pm i \lambda)^{-1}$ is surjective. To prove this it is enough to show that there exists $\lambda>0$ such that

$$
\left\|B(A \pm i \lambda)^{-1}\right\|<1
$$

employing Neumann series.

Let $\phi \in D(A)$. By the hypotheses B is A-bounded with A-bound $\beta_{0}<1$, there exist $0<\beta<1$ and $\alpha>0$ such that

$$
\begin{equation*}
\|B \phi\| \leq \alpha\|\phi\|+\beta\|A \phi\| . \tag{0.2}
\end{equation*}
$$

Let $\psi \in \mathcal{H}$, since $(A \pm i \lambda)$ is surjective there exists $\phi \in D(A)$ such that $(A \pm i \lambda) \phi=\psi$. This implies that

$$
\begin{equation*}
\left\|B(A \pm i \lambda)^{-1} \psi\right\|=\|B \phi\| \leq \alpha\|\phi\|+\beta\|A \phi\| \tag{0.3}
\end{equation*}
$$

In addition,

$$
\|\psi\|^{2}=\|(A \pm i \lambda) \phi\|^{2}=((A \pm i \lambda) \phi,(A \pm i \lambda) \phi)=\|A \phi\|^{2}+\lambda^{2}\|\phi\|^{2}
$$

As a consequence,

$$
\left\{\begin{array}{l}
\|A \phi\| \leq\|\psi\|, \tag{0.4}\\
\|\phi\| \leq \frac{1}{\lambda}\|\psi\|
\end{array}\right.
$$

Combining (0.4) with (0.3) we obtain

$$
\left\|B(A \pm i \lambda)^{-1} \psi\right\| \leq\left(\frac{\alpha}{\lambda}+\beta\right)\|\psi\|<\|\psi\|
$$

whenever λ is chosen sufficiently large.

Second Part. We know that $A=A^{*}$ and $(A+B)^{*}=A+B$. From the Exercise $4, A \geq M$ yields that $(-\infty, M) \subset \rho(A)$. We would like to find \widetilde{M} so that $(-\infty, \widetilde{M}) \subset \rho(A+B)$. (exercise!).

Remark 1. It is not possible to improve the condition $\beta_{0}<1$.
For instance, if we choose $B=-A$ then $\beta_{0}=1$, where A is an unbounded operator. Indeed, we have $A+B: D(A) \subseteq \mathcal{H} \rightarrow \mathcal{H}$, $A+B=0$ but $0_{\mathcal{H}}: \mathcal{H} \rightarrow \mathcal{H}$ is symmetric which implies that $A+B$ is not maximal symmetric and thus $A+B$ is not a self-adjoint operator.

Definition 4. B is called relatively compact to A, or B is A-compact, if there exists $z \in \rho(A)$ such that

$$
B(A-z)^{-1} \in \mathcal{K}(\mathcal{H})=\{L \in \mathcal{B}: L \text { is a compact operator }\}
$$

Remark 2. We already saw that if B is A-compact, then B is A bounded.

Theorem 6. Let $A=A^{*}$ and let B be an A-compact operator. Then B is A-bounded operator with A-bound equals zero.

Definition 5. Let $A=A^{*}$ be a linear operator. The discrete spectrum of A is the set in \mathbb{C} given by

$$
\sigma_{d}(A)=\left\{\lambda \in V_{p}(A): \lambda \text { is isolated with finite multiplicity }\right\} .
$$

The essential spectrum of A is the set in \mathbb{C} given by $\sigma_{e}(A)=$ $\sigma(A) \backslash \sigma_{d}(A)$.

Theorem 7 (Theorem of Kato-Rellich (II)). Let $A=A^{*}$ and $B \subseteq B^{*}$ such that B is A-compact. Then $A+B$ is a self-adjoint operator and $\sigma_{e}(A+B)=\sigma_{e}(A)$.

Application

A quantum particle of mass m interacting with a potential (real measurable) V in \mathbb{R}^{3} is described by the the Schrödinger equation,

$$
\begin{equation*}
i \not h \partial_{t} u=-\frac{\not h^{2}}{2 m} \Delta u+V(x) u \tag{0.5}
\end{equation*}
$$

where $h=\frac{h}{2 \pi}$ is the Plank constant and $u(x, t) \in \mathbb{C}$. The quantity $|u(x, t)|^{2}$ is a probability density of distribution of the particle at instant t. That is, if $u(x, 0)=\phi(x)$ and S is a measurable set in \mathbb{R}^{3}, then

$$
P(S)=\frac{1}{\|\phi\|^{2}} \int_{S}|u(x, t)|^{2} d x
$$

is the probability to find a particle in the set S.

Exercise 8. Verify that $\|u(\cdot, t)\|=\|\phi\|$ for all $t \in \mathbb{R}$ holds.
We can normalize the equation (0.5) and write it in the equivalent form

$$
i \partial_{t} u=H u
$$

where $H=H_{0}+V . H$ is called the Hamiltonian and H_{0} is called the free Hamiltonian.

We will show that $H=H^{*}$.
Remark 3. Notice that

$$
\frac{d}{d t}\|u(t)\|^{2}=\left(\partial_{t} u, u\right)+(u, \partial u)
$$

then

$$
-i\left(u, \partial_{t} u\right)=\left(u, i \partial_{t} u\right)=(u, H u)=(H u, u)
$$

which implies

$$
\frac{d}{d t}\|u(t)\|^{2}=i(H u, u)-i(u, H u)=0
$$

Proposition 2. Let $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a measurable, if $V \in L^{2}\left(\mathbb{R}^{3}\right)+$ $L_{\infty}^{\infty}\left(\mathbb{R}^{3}\right)$. (i.e. there exist $V_{1} \in L^{2}\left(\mathbb{R}^{3}\right)$ and $V_{2} \in L_{\infty}^{\infty}$ with $\left.V=V_{1}+V_{2}\right)$, then V is H_{0}-compact.

Above we use the notation

$$
\begin{aligned}
L_{\infty}^{\infty}\left(\mathbb{R}^{3}\right)= & \left\{f \in L^{\infty}\left(\mathbb{R}^{3}\right): \forall \epsilon>0, \exists M>0\right. \\
& \text { such that }|f(x)| \leq \epsilon \text { a.e. }|x| \geq M\}
\end{aligned}
$$

Proof. We shall show that there exists $z \in \rho\left(H_{0}\right)=\mathbb{C} \backslash[0, \infty)$ such that $V\left(H_{0}-z\right)^{-1}$ is compact.
From Exercise 9 if $R_{0}(z)=\left(H_{0}-z\right)^{-1}$ then

$$
R_{0}(z) f=\frac{1}{4 \pi} \frac{e^{i \sqrt{z}|x|}}{|x|} * f, \text { for } n=3 \text { where } \operatorname{Im} \sqrt{z}>0
$$

Hence

$$
V\left(H_{o}-z\right)^{-1} f(x)=V(x) \int_{\mathbb{R}^{3}} \frac{e^{i \sqrt{z}|x-y|}}{4 \pi|x-y|} f(y) d y
$$

Then

$$
\begin{aligned}
V\left(H_{0}-z\right)^{-1} f(x)= & \int_{\mathbb{R}^{3}} \underbrace{V_{1}(x) \frac{e^{i \sqrt{z}|x-y|}}{4 \pi|x-y|}}_{K_{1}(x, y)} f(y) d y \\
& +\int_{\mathbb{R}^{3}} \underbrace{V_{2}(X) \frac{e^{i \sqrt{z}|x-y|}}{4 \pi|x-y|}}_{K_{2}(x, y)} f(y) d y .
\end{aligned}
$$

and so

$$
V\left(H_{0}-z\right)^{-1} f=T_{K_{1}} f+T_{K_{2}} f .
$$

Next we consider $T_{K_{1}}$.
Notice that

$$
\begin{aligned}
\left\|K_{1}\right\|^{2} & =\int_{\mathbb{R}^{3}}\left|V_{1}(x)\right|^{2} \frac{e^{-2 \operatorname{Im} \sqrt{z}|x-y|}}{|x-y|^{2}} d x d y \\
& =\int_{\mathbb{R}^{3}}\left|V_{1}(x)\right|^{2}\left(\int_{\mathbb{R}^{3}} \frac{e^{-2 \operatorname{Im} \sqrt{z}|\tilde{y}|}}{|\tilde{y}|^{2}} d \tilde{y}\right) d x \\
& =\left\|V_{1}\right\|^{2} \omega\left(S^{2}\right) \int_{0}^{\infty} e^{-2 \operatorname{Im} \sqrt{z} r} d r \\
& \leq c\left\|V_{1}\right\|^{2} .
\end{aligned}
$$

where we used the change of variable $\tilde{y}=x-y$ and after applying Fubinni's theorem we employed polar coordinates.
We conclude that $K_{1} \in L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)$. Thus $T_{K_{1}}$ is a Hilbert-Schmidt operator. Therefore it is a compact operator.

Now we study $T_{K_{2}}$.
For any $\epsilon>0$, there exists $M_{\epsilon}>0$ such that $\left|V_{2}(x)\right| \leq \epsilon$ a.e. for $|x|>M_{\epsilon}$.
Define

$$
V_{2}^{\epsilon}(x)=\left\{\begin{array}{cc}
V_{2}(x), & \text { if }|x| \leq M_{\epsilon} \\
0, & \text { if }|x| \geq M_{\epsilon} .
\end{array}\right.
$$

It is clear that $V_{2}^{\epsilon}(x) \in L^{2}\left(\mathbb{R}^{3}\right.$. Then $T_{K_{2}}^{\epsilon}=V_{2}^{\epsilon}\left(H_{0}-z\right)^{-1}$ is a compact operator by using the same analysis for $T_{K_{1}}$.
On the other hand,

$$
\begin{aligned}
\left\|T_{K_{2}} f-T_{K_{2}}^{\epsilon} f\right\| & =\left\|\left(V_{2}-V_{2}^{\epsilon}\right)\left(H_{0}-z\right)^{-1} f\right\| \\
& \leq\left\|V_{2}-V_{2}^{\epsilon}\right\|\left\|\left(H_{0}-z\right)^{-1} f\right\| \\
& \leq\left\|V_{2}-V_{2}^{\epsilon}\right\|\| \|\left(H_{0}-z\right)^{-1}\| \| f \| .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|T_{K_{2}} f-T_{K_{2}}^{\epsilon}\right\| & \leq\left\|V_{2}-V_{2}^{\epsilon}\right\|\left\|\left(H_{0}-z\right)^{-1}\right\| \\
& \leq \epsilon\left\|\left(H_{0}-z\right)^{-1}\right\| \rightarrow 0 \text { as } \epsilon \rightarrow 0 .
\end{aligned}
$$

Thus $T_{K_{2}}$ is also compact (since $\mathcal{K}\left(L^{2}\left(\mathbb{R}^{3}\right)\right)$ is closed). Therefore V is H_{0}-compact.

Using the Theorem of Kato-Rellich II we deduce then that $H=H^{*}$.
Example 2. The Coulomb potential $V(x)=\frac{\alpha}{|x|}, \alpha>0$ belongs to the class in Proposition 2.

Exercise 9. Let $H_{0}=-\Delta: H^{2}\left(\mathbb{R}^{n}\right) \subseteq L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ be the free Hamiltonian and let $z \in \rho\left(H_{0}\right)=\mathbb{C} \backslash[0,+\infty)$.
(i) Prove that

$$
R_{0}(z) g:=\left(H_{0}-z\right)^{-1} f=\mathcal{R}_{z} * g, \forall g \in L^{2}\left(\mathbb{R}^{n}\right)
$$

where $\mathcal{R}_{z}=\left(\left(|\xi|^{2}-z\right)^{-1}\right)^{\vee}$. Check that $R_{0}(z) \in \mathcal{B}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$.
(ii) In case $n=1$, prove that

$$
\mathcal{R}_{z}(x)=\frac{e^{i \sqrt{z}|x|}}{2 \sqrt{z}}, \quad \text { where } \operatorname{Im} \sqrt{z}>0
$$

Hint: Use the Residue Theorem.
(iii) If $z=\lambda+$ i with $\lambda \geq 0$, prove that $\lim _{\eta \rightarrow 0} R_{0}(\lambda+i \eta)$ does not exist $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$.

References

[1] T. Kato, Perturbation Theory for Linear Operators, SpringerVerlag (1995).

